

Mid-Infrared LED (MIR LED): 2000 nm - 2500 nm

WAVELENGTH

1750–2000 nm

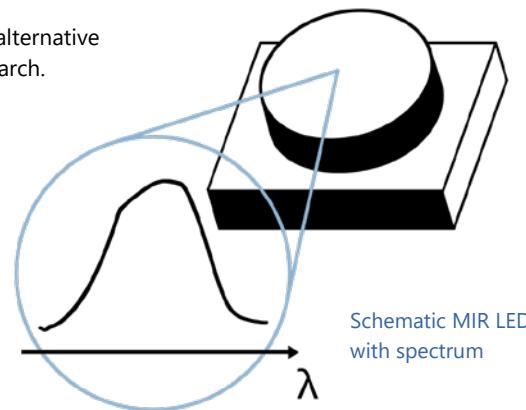
2000–2500 nm

2800–4000 nm

4000–5300 nm

5300–6500 nm

TOP WAVELENGTH


3400 nm

4300 nm

5200 nm

nanoplus Mid-Infrared LED (**MIR LED**) are specially designed and characterized to fit your requirements. For 25 years, nanoplus has been manufacturing Distributed Feedback and Fabry-Pérot Lasers with excellent performance. Our devices operate **reliably** in more than 100,000 installations worldwide.

nanoplus **MIR LED** are a broadband, incoherent and cost-effective alternative to lasers for e.g. many gas sensing applications in industry and research.

Key features:

- LOW POWER CONSUMPTION
- CW OPERATION
- BROADBAND
- INCOHERENT

Any **custom wavelength** is possible: You tell us what you need and we deliver it. With our outstanding technology we design any wavelength **between 1750 nm and 6500 nm** within a spectral window where your desired emission wavelength reaches at least 95% of the maximum spectral intensity.

nanoplus MIR LED are the perfect light source **for mobile analyzers**, as they **consume little power**.

You can use our MIR LED in **true continuous wave operation** at **room temperature**.

The MIR LEDs' **output power** of **> 1 mW** leads to a strong signal and increases your measurement precision.

We offer **various packaging options**, with or without TEC. You tell us what you need!

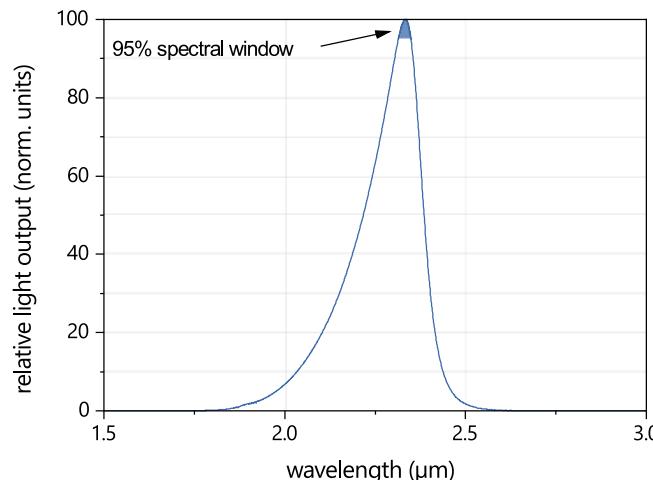
Long-term stability is what our customers really want! Even in **harsh environments** nanoplus devices perform excellently – low maintenance warranted.

"Do not change your ideas, let us deliver a MIR LED that fits your application."

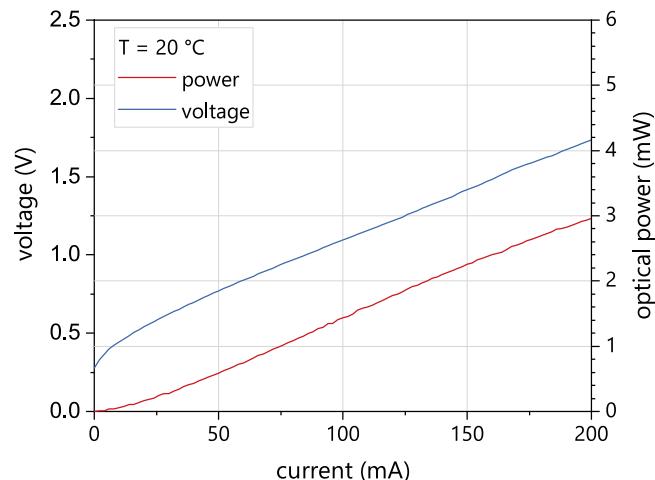
If you require **custom specifications**, please contact us. Nearly 80 % of our devices are more or less customer-specific. As nanoplus is a **fully vertically integrated company**, we control the entire process chain from design to packaging. Both nanoplus production facilities are based in **Germany**.

To guarantee consistent product quality we apply a strict and **ISO certified quality management system** at all levels.

Our sales and R&D teams have long-standing experience in developing lasers. They will be pleased to provide advice at any time - rely on us from design stage to product realization as well as after-sales:


nanoplus MIR LED
on SMD submount

We make market leaders!



Typical Specifications: 2000 nm - 2500 nm

This data sheet reports performance data of a **sample MIR LED at 2.35 μm** , which is representative for the entire wavelength range.

Typical room temperature cw spectrum of a nanoplus MIR LED at 2.35 μm

Typical PI and VI curve of a nanoplus MIR LED at 2.35 μm

electro-optical characteristics	symbol	unit	min.	typ	max.
operating wavelength (at $T_{\text{op}}, I_{\text{op}}$) ^{1,2}	λ_{op}	μm	2.2	2.35	2.4
spectral bandwidth (FWHM)	$\Delta \lambda$	μm		0.17	
optical cw output power (at λ_{op}) ³	P_{op}	mW	2	3	
operating current	I_{op}	mA	150	200	
operating voltage	V_{op}	V		1.7	
operating case temperature ⁴	T_{op}	$^{\circ}\text{C}$	-10		50
storage temperature ⁴	T_s	$^{\circ}\text{C}$	-10		70

¹ ~ 20 nm peak-change per 10°C temperature-change

² spectral window defined as the range where the emission intensity reaches min. 95 % of max. spectral intensity

³ power dissipation 1W [heatsink required]

⁴ non condensing

**Pulsed operation for low power consumption is possible.
Other operating temperatures are available on request.**

packaging options

SMD submount

ceramic submount

PCB mounted

Other packaging options may be discussed on request.

Technical drawings & accessories are available at: <https://www.nanoplus-usa.com/products/packaging>

Please contact victor.perez@nanoplus.com for customized specifications, quotes and further questions.

Visit the [nanoplus website](http://nanoplus.com) for technical notes, application samples or literature referrals.