Distributed Feedback Lasers

2600 nm - 2900 nm

nanoplus Distributed Feedback Lasers (**DFB**) are specifically designed for high-precision gas detection using tunable diode laser absorption spectroscopy (**TDLAS**). Our devices operate **reliably** in more than 50,000 installations worldwide. For 25 years nanoplus has set the standard for DFB laser technology and is the only manufacturer routinely providing DFB lasers at **any wavelength**.

Key features:

- MONOMODE
- CONTINUOUS WAVE
- ROOM TEMPERATURE
- MODE HOP FREE TUNING

Overgrowth-free DFB device processing

Any **custom wavelength** is possible: You tell us what you need and we deliver it. With our patented DFB technology we design any wavelength **between 760 nm and 14 \mum.**

Our excellent **spectral purity** is characterized by a large side mode suppression ratio (**SMSR**) of > **35 dB**, giving your system a low signal to noise ratio against crossinterference.

A **narrow linewidth below 3 MHz** guarantees ultra-precise scanning of the absorption line feature. The **high output power** of **several mW** yields a stronger signal and increases your

Fast and wide wavelength tuning is required for in situ systems. Most customers use a scan rate of 10 kHz and benefit from our very large tuning coefficient.

measurement precision.

"Do not change your ideas, let us deliver a laser that fits your application."

We offer **various packaging options**, e.g. several free space housings including TEC and NTC, fiber coupling, **collimation** and **custom designs**. What do you require?

If you require **custom specifications**, please contact us. Nearly 80 % of our devices are more or less customer-specific. As nanoplus is a **fully vertically integrated company**, we control the entire process chain from design to packaging. Both nanoplus production facilities are based in **Germany**. To guarantee consistent product quality we apply a strict and **ISO certified quality management system** at all levels.

Our sales and R&D teams have long-standing experience in developing lasers. They will advise you in your design and realization phase as well as after-sales: **We make market leaders!**

760-830 nm

830-920 nm

920-1100 nm

1100-1300 nm

1300-1650 nm

1650-1850 nm

1850-2200 nm

2200-2600 nm

2600-2900 nm

2800-4000 nm

4000–4600 nm

4600-5300 nm

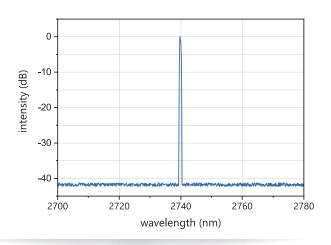
5300–5800 nm

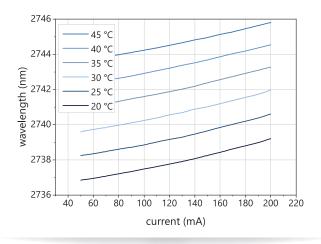
5800–6500 nm

6000-14000 nm

Schematic DFB

with spectrum


TO5, TO56 and


fiber coupled butterfly package

Typical Specifications: 2600 nm - 2900 nm

This data sheet reports performance data of a **sample nanoplus DFB laser at 2740 nm**, which is representative for the entire wavelength range.

Typical room temperature cw spectrum of a nanoplus DFB laser at 2740 nm

Typical mode hop free tuning of a nanoplus DFB laser at 2740 nm by current and temperature

electro-optical characteristics	symbol	unit	min.	typ	max.
operating wavelength (at $T_{op'}$ I_{op})	$\boldsymbol{\lambda}_{\text{op}}$	nm		Please specify to 0.1 nm.	
optical output power (at λ_{op})	P_{op}	mW		2	
operating current	l _{op}	mA		100	
operating voltage	V_{op}	V		2.3	
threshold current	I _{th}	mA	30	50	80
side mode suppression ratio	SMSR	dB		> 35	
current tuning coefficient	C _I	nm / mA	0.01	0.02	0.05
temperature tuning coefficient	$C_{\scriptscriptstyle T}$	nm / K	0.15	0.20	0.28
operating chip temperature	T_{op}	°C	+20	+25	+50
operating case temperature*	T_{c}	°C	-20	+25	+50
storage temperature*	T_s	°C	-40	+20	+80

laser packaging options

chip on carrier without TEC, with NTC

* non-condensing

TO5 with TEC and NTC, black cap, AR coated window TO56 without TEC or NTC, sealed, window c-mount without TEC or NTC

Technical drawings & accessories are available at: https://www.nanoplus-usa.com/products/packaging

Please contact <u>victor.perez@nanoplus.com</u> for customized specifications, quotes and further questions. Visit the <u>nanoplus website</u> for technical notes, application samples or literature referrals.